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Abstract  

In a fast changing world, where human activities disturb and change many habitats, species 

being able to exploit these changed areas have an opportunity to rapidly expand their range. 

During range expansion, the edge of a population may undergo repeated bottlenecks reducing 

the genetic variation and the effective population size (Ne). Leading to a stronger effect of 

genetic drift and thereby allowing deleterious alleles to accumulate. The accumulation of 

deleterious alleles contributes to the genetic load, the fraction mean fitness diverges from a 

theoretical optimum. The amount of genetic load can shape the future of a population’s ability 

to adapt and survive in its environment. It is therefore crucial to understand how demography 

and deleterious mutations interact across a population. Here, I used the allotetraploid Capsella 

bursa-pastoris, with a known population structure and demographic history, to address if and 

how genetic load varies across its range. Capsella bursa-pastoris originated somewhere 

between Europe and the Middle East and later spread to Asia. Additionally, I investigated 

whether there is an effect of polyploidy. In particular, I tested whether one subgenome buffers 

the other. Capsella bursa-pastoris is a great candidate to address these questions because it is 

an allopolyploid with two distinct subgenomes and disomic inheritance. I used two separate 

approaches to assess the genetic load. The first was to simply count the number of predicted 

deleterious alleles in coding regions. The second approach was to estimate the distribution of 

fitness effects (DFE) from sequence polymorphism data. In agreement with expectations, I 

found that the subpopulation at the edge of the expansion front, in Asia, exhibited the highest 

genetic load. However, in disagreement with the expectations, the European subpopulation 

displayed the lowest genetic load. The main conclusion at this stage is that genetic load varies 

across the range of this species, however, the variation could not be entirely explained by the 

range-expansion hypothesis first assumed.  
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Introduction 

The majority of mutations arising in populations are deleterious by nature and effect fitness 

negatively, therefore contributing to the genetic load. The concept of genetic load was first 

formulated by J. B. S. Haldane (Haldane 1937). James F. Crow built on Haldane’s ideas and 

formulated genetic load in three separate ways, one being, as the reduction in mean fitness of a 

population due to the presence of deleterious alleles compared to an ideal population free of 

deleterious mutations (Crow 1970). 

Changes in a species habitat, either directly induced by humans (such as deforestation) or 

indirectly by the climate (such as drought), can force a species to expand its range in order to 

survive. It has been shown that range expansion is generally accompanied by an increase in 

genetic load (Peischl et al. 2013; Peischl et al. 2015). As a result of low genetic diversity and 

genetic drift, the amount of genetic load can critically reduce the viability and adaptive potential 

of a population (Lynch and Gabriel 1990; Lynch et al. 1995; Lohr and Haag 2015). It is 

therefore of importance to understand the underlying dynamics behind the accumulation of 

deleterious alleles, more specifically that is due to range expansion. 

Accumulation of deleterious mutations 

A multitude of causes have been invoked in the literature to explain how the accumulation of 

deleterious alleles contributes to genetic load. Firstly, all populations experience mutations 

which are deleterious and will lead mean fitness to be less than what the optimal fitness 

theoretically could be (Muller 1950). Secondly, in small populations, fixation of deleterious 

alleles can occur at random through genetic drift (Crow 1970; Lynch et al. 1995; Whitlock 

2000; Lohr and Haag 2015). Finally, expanding populations often undergo multiple 

colonization events at the forefront of the expansion range causing repeated bottlenecks and 

increasing the frequency of deleterious alleles (Hallatschek and Nelson 2010; Peischl et al. 

2013; Peischl et al. 2015).  

The mating system of a species also affects its genetic load, especially when comparing strictly 

outcrossing species with highly self-fertilizing ones (Husband and Schemske 1996; Arunkumar 

et al. 2015). In outcrossing species, deleterious alleles are maintained at low frequencies 

because selection is efficient and they are mostly masked within heterozygotes. Selfing on the 

other hand unmasks deleterious alleles by increasing homozygosity and strongly deleterious 

alleles can be purged from the genome (Husband and Schemske 1996). However, selection is 
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less efficient in selfing species due to a reduction in the effective population size (Ne) and 

thereby an increased effect of genetic drift (Charlesworth and Wright 2001). Because selection 

is less effective weakly deleterious alleles behave as neutral or nearly neutral and can therefore 

reach higher frequency and even go to fixation (Bataillon and Kirkpatrick 2000; Charlesworth 

and Willis 2009). 

A common phenomenon in plants is whole genome duplication (WGD), which is a duplication 

of the genomes by either fusing unreduced gametes or doubling the genome of somatic tissue. 

WGD can occur in two ways, either by allopolyploidy, meaning through hybridisation where 

the progeny inherits the full set of one or both parental genomes or autopolyploidy where the 

duplication happens within the same taxon. Little is known about the relationship between the 

amount of deleterious alleles and ploidy level. By just going from a haploid genome to a diploid 

genome the accumulation of deleterious alleles changes. In haploid genomes, deleterious alleles 

will quickly be purged because they are always expressed and therefore will result in lower 

fitness and be removed by natural selection (Mable and Otto 2001). On the other hand, in a 

diploid genome, deleterious alleles will persist longer and at low frequencies in the genome due 

to masking in heterozygotes.  

Inbreeding depression  

Populations with varying degrees of inbreeding will increase the proportion of homozygotes. 

This increase in homozygous sites can in turn lead to inbreeding depression (i.e. the reduction 

in fitness of inbred individuals compared to outbred ones). Two main processes leading to more 

homozygous individuals having lower fitness, hence explaining inbreeding depression: (i) 

overdominance or heterozygote advantage (i.e. the heterozygotes having a higher fitness than 

either homozygotes) and (ii) partially recessive deleterious alleles.  

Partially recessive deleterious alleles can create inbreeding depression by being expressed at a 

higher rate. This increase in expression is due to the increased frequency of homozygous sites 

and selection being less efficient in removing them. Overdominance will not be discussed 

further since the focus here lies on deleterious mutations.  

Characterisation of deleterious mutations 

There are numerous ways to characterise deleterious alleles in a genome. A common method is 

to estimate the distribution of fitness effects (DFE). The DFE is the distribution of the allelic 

fitness effects, a gradient ranging from lethal, through neutral, to strongly beneficial. There are 
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different approaches to estimate the DFE: one method is based on mutation accumulation (MA) 

experiments and has been used in model organisms with short generation time, including 

Saccharomyces cerevisiae (Zeyl and DeVisser 2001; Joseph and Hall 2004) Caenorhabditis 

elegans (Keightley and Caballero 1997; Vassilieva et al. 2000), Drosophila melanogaster 

(García-Dorado et al. 1998; Loewe and Charlesworth 2006; Keightley and Eyre-Walker 2007) 

and Arabidopsis thaliana (Schultz et al. 1999; Shaw et al. 2002). These experiments are limited 

for practical and theoretical reasons.  For example, not all organisms of interest are easy to 

study over numerous generations due to long generation times—nor easy to keep in a constant 

and benign environment to minimize the effects of selection. Additionally, only alleles that 

have a high or moderate impact on fitness can be identified (Davies et al. 1999; Bataillon and 

Bailey 2014). Therefore, much information is lost since the majority of mutations have a low 

impact on fitness (Davies et al. 1999; Keightley and Eyre-Walker 1999; Boyko et al. 2008).   

Alternative approaches to estimate the DFE are based on DNA sequence data and can be used 

to get around the limits of MA experiments. A variety of models have been presented through 

the years, a few that only estimate the DFE of deleterious alleles (Loewe and Charlesworth 

2006; Eyre-Walker and Keightley 2009) and lately models that also consider both deleterious 

and beneficial alleles (Keightley and Eyre-Walker 2007; Boyko et al. 2008; Gronau et al. 2013). 

Many models build upon generating the site frequency spectrum (SFS) of both neutral alleles 

and alleles under selection, fitting this spectrum to a model and finding the most likely 

parameter values to represent the data. The DFE are typically modelled using a gamma 

distribution, since it is flexible and can take different forms. Typically, the DFE is expected to 

be L-shaped, meaning that most mutations have low or neutral effects on fitness and relatively 

few have strong effects.  

A complementary approach to DFE for characterising deleterious alleles is to assign the 

mutation a prediction regarding the effect it might have on protein function. There are software 

packages that do this, the most commonly used being PolyPhen2 (Polymorphism Phenotyping 

v2) (Adzhubei et al. 2010), SIFT (Sorting Intolerant from Tolerant) (Kumar et al. 2009) and 

PROVEAN (Protein Variation Effect Analyzer) (Choi et al. 2012). They all use different 

approaches to make predictions. The SIFT algorithm uses alignments of orthologous genes to 

calculate and assign a conservation score to mutations at each site—the rarer the mutation is at 

a site, the more likely it is to be deleterious and to get a low score. Polyphen2 on the other hand 

builds its predictions with a sequence and structure-based algorithm using a naïve Bayes 
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classifier. PROVEAN makes predictions based on a calculated PROVEAN score. The score is 

inferred by aligning homologous sequences and calculating a sequence score before and after 

the mutation is introduced. Software comparisons have shown that they produced equivalent 

results (Flanagan et al. 2010; Choi et al. 2012; Renaut and Rieseberg 2015; Zhang et al. 2016). 

Recently, SIFT4G (SIFT for Genomes) has been developed (Vaser et al. 2016). This is a faster 

version of the original SIFT and will therefore be the software used here to predict the effect of 

mutations on protein function. 

Study system and goal 

The self-fertilizing species Capsella bursa-pastoris is a suitable candidate to use as a study 

system to tackle the questions on genetic load in an expanding and structured population and 

effects of polyploidy. Firstly, C. bursa-pastoris has been shown to be an allopolyploid (Hurka 

et al. 1989; Douglas et al. 2015; Roux and Pannell 2015) with strictly disomic inheritance 

(Hurka et al. 1989), meaning that it is a hybrid with no recombination occurring between the 

subgenomes. This gives the opportunity to treat and analyse the two subgenomes as two 

separate diploid genomes while providing information about polyploidy.  

Secondly, the parental species to C. bursa-pastoris are believed to be the ancestors of the 

outcrossing C. grandiflora and the self-fertilizing C. orientalis (Douglas et al. 2015). The 

different mating systems in the parental species in combination with C. bursa-pastoris being a 

self-fertilizing species provides the possibility to investigate the genetic load from different 

starting conditions. 

Thirdly, C. bursa-pastoris has a wide distribution (Hurka and Neuffer 1997; Hurka et al. 2012) 

and is genetically structured in at least three subpopulations (Cornille et al. 2016; Kryvokhyzha 

et al. 2016): Asia (ASI), Middle East (ME) and finally Europe and Russia (EUR). Further, 

Cornille et al. (2016) suggests that the origin of C. bursa-pastoris lies in the Middle East and 

that there have been two main colonization events, the first colonization happened towards 

Europe and the second in the direction of Asia. The recent spread of C. bursa-pastoris into 

Europe and Asia will allow examination of the accumulation of deleterious alleles during range 

expansion.  

In order to address the issues of how polyploidy in combination with range expansion affect 

genetic load, I characterized the genetic load in the three subpopulations of C. bursa-pastoris 

by estimating the DFE and by using SIFT4G to characterize deleterious alleles.  
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Materials and methods 

Genomic data 

The data used for the analyses consisted of an alignment of 1.9 million single polymorphism 

sites within coding regions across 31 C. bursa-pastoris, 10 C. orientalis and 13 C. grandiflora 

samples. Whole genome DNA sequences for 10 C. bursa-pastoris accessions and all C. 

orientalis and C. grandiflora samples were downloaded from GenBank (PRJNA268827, 

PRJNA245911, PRJNA254516). The other 21 C. bursa-pastoris accessions were sequenced 

using the same method as the downloaded C. bursa-pastoris accessions (100-bp paired-end 

reads, Illumina HiSeq 2000 platform, SciLife, Stockholm, Sweden) (Kryvokhyzha et al. 

unpublished). The DNA reads were mapped to the Capsella rubella reference genome (Slotte 

et al. 2013) using Stampy v1.0.22 (Lunter and Goodson 2011), Picard Tools 1.115 

(http://picard.sourceforge.net) was used to mark PCR duplicates which were ignored during 

genotyping. HaplotypeCaller from the Genome Analysis Toolkit (GATK) v3.5 (McKenna et 

al. 2010) was used for genotyping and HapCUT version 0.7 (Bansal and Bafna 2008) for 

phasing each sample. The fragments HapCUT were joined into continuous sequences 

descendant from either C. grandiflora or C. orientalis using custom scripts (Kryvokhyzha). 

Reconstructed ancestral sequences were obtained by using the empirical Bayes joint 

reconstruction method with PAML v4.6 (Yang 1997) on the tree assumed to best reflect the 

true history of Capsella (Kryvokhyzha et al. unpublished). 

Watterson's theta 

Estimations of Watterson’s theta were obtained with Equation 1, where s is the number of 

segregating sites in a sample of n sequences.  

 
θ =

𝑠

1 +
1
2 +

1
3 +⋯+

1
𝑛 − 1

 
(1) 

 

SIFT characterising of deleterious mutations 

Two different approaches were used to assess the genetic load. First, I identified deleterious 

mutations within each sample. A reference prediction file was made by classifying all variants 

(A, T, G, C) for all sites within coding regions as tolerated or deleterious, hereafter referred to 

http://picard.sourceforge.net/
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as the SIFT4G annotation file. The classifications were made by the software SIFT4G using the 

C. rubella database and mutations were polarized with three reference points (Figure 1).  

 

Figure 1. Phylogenetic relationships of Capsella species.  The three different reference points used 

are marked A-C. A represents C. rubella. B represents the reconstructed ancestral sequence between 

C. bursa-pastoris and C. grandiflora and C, the reconstructed ancestral sequence betwee n C. bursa-

pastoris and C. orientalis.  

Comparison between the subpopulations (ASI, EUR, ME), the subgenomes within C. bursa-

pastoris (CbpCg, CbpCo) and the parental species (C. grandiflora and C. orientalis) were made 

by referencing all the SNP sites towards the SIFT4G annotation file and count variants predicted 

to have a deleterious effect within each sample. This was done in four separate sets. The first, 

to count all deleterious alleles within each sample. The second, to count all fixed deleterious 

alleles in each subpopulation. The third, counting derived deleterious alleles in each sample by 

using the reconstructed ancestral sequence (Figure 1B, Figure 1C) to polarize the alleles. Lastly, 

the count of the number of fixed derived deleterious alleles in each subpopulation. Common to 

all sets were that deleterious predictions with low confidence (SIFT4G annotation: 

“*WARNING! Low confidence”) were ignored. However, including low confidence 

predictions in the analysis did not change the outcome (Table A1, Figure A1 and Figure A2, 

Appendix). 

As the coverage level of the genome varied among individuals, I normalized the absolute 

number of deleterious and fixed deleterious alleles by the total number of annotated sites. 

Similarly, the derived deleterious and derived fixed deleterious alleles were normalized by the 

total number of derived annotated sites. 
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To test whether subpopulations differed from one another a Kruskal-Wallis test and a Dunn’s 

test were performed due to unequal variance among subpopulations. Each subgenome was 

considered separately. 

Site frequency spectrum 

The site frequency spectrum (SFS) for derived mutations was constructed with the ancestral 

references (Figure 1B, Figure 1C) to identify derived mutations and the SIFT4G annotation file 

for classification. Each derived mutation was classified as either synonymous or 

nonsynonymous, with the nonsynonymous mutations further divided into tolerated and 

deleterious.  

To estimate the total number of nonsynonymous and synonymous sites, a simplified method 

that assumes the same mutations probability between all variants at a site was used. 

Synonymous and nonsynonymous mutations were counted at all SIFT4G annotations where the 

alternate allele did not equal the reference allele. The absolute numbers were then divided by 3 

since three different mutations can occur at a site. 

The distribution of fitness effects 

The second approach used to assess the genetic load was to estimate the full distribution of 

fitness effect (DFE) of mutation, based on the comparison of the synonymous and 

nonsynonymous mutations SFS. Here, polyDFE was used since it can estimate the full DFE by 

using polymorphism data alone (Tataru et al. 2016). Within the framework of polyDFE there 

are four different models that can be used to describe the DFE. The first model (A) predicts 

only deleterious alleles and uses a gamma distribution to describe their distribution. The second 

(B) and third (C) models consider both deleterious and beneficial alleles. Both use a gamma 

distribution to model deleterious alleles. For beneficial alleles, the second model (B) uses a 

discrete distribution and the third model (C) uses an exponential distribution. The last model 

(D) uses a discrete distribution and K number of selection coefficients (S1, S2,… SK) with 

probabilities (p1, p2,… pK).  

PolyDFE was run with the Broyden-Fletcher-Goldfarb-Shanno (bfgs) algorithm to estimate the 

parameters that maximize the likelihood function. To start, all models (A, B, C, D) were run 

for each data set. To be able to run the four models, the range within which the parameter values 

can be estimated needs to be provided (Table A2, Appendix). Additionally, to run Model D the 

number of selection coefficients to consider (K) is needed and K was set to 4. Further, Model 
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D also requires initial values for the parameters (Table A3, Appendix), each parameter value is 

accompanied by a flag signalling whether the parameter value should be estimated (0) or be 

kept fixed (1). Both the range values and initial parameter values were obtained from the 

example files accompanying polyDFE. An additional run was performed using only model A 

and fixing the maximum values the selection coefficient can take (Smax) to 0.  

In choosing the model that best represents the data, the Akaike information criterion (AIC) 

score was calculated and the model with the lowest score chosen. For data set where model A 

had the lowest AIC score but a skewed distribution the values from the run with Smax set to 0 

was used.  

 

Results 

The proportion of segregating sites differed among subpopulations between the two 

subgenomes of C. bursa-pastoris. In CbpCg the highest proportion was found in EUR, and the 

lowest in ASI, while in CbpCo, the highest proportion was also found in EUR but the lowest in 

ME (Table 1). Notably, the CbpCo ASI subgenome had a somewhat higher proportion of 

segregating sites than the CbpCg ASI (Table 1). Similarly, the Watterson’s theta estimates were 

higher for CbpCo than for CbpCg, however, marginally in ME (Table 1).  

Table 1. Proportion of segregating sites and Watterson’s 

theta estimates for each subpopulation of C. bursa-pastoris 

and the parental species C. grandiflora and C. orientalis.   
 

Proportion of 
segregating sites 

Watterson's theta 

CbpCg ASI 0.009 0.0024 

CbpCo ASI 0.015 0.0038 

CbpCg EUR 0.022 0.0054 

CbpCo EUR 0.023 0.0057 

CbpCg ME 0.012 0.0035 

CbpCo ME 0.012 0.0036 

C. grandiflora 0.077 0.0159 

C. orientalis 0.008 0.0018 

 

Comparing C. bursa-pastoris subpopulations to their parental species show that all CbpCg 

subpopulations have less genetic variation in comparison to C. grandiflora (Table 1). In 

contrast, all CbpCo subpopulations have a higher genetic variation than C. orientalis (Table 1).  
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SIFT characterising of deleterious mutations 

By using SIFT4G to make predictions about the state of mutations (tolerated or deleterious) the 

genetic load in the three subpopulations (ASI, EUR and ME) and the parental species (C. 

grandiflora and C. orientalis) was estimated. The overall genetic load, meaning all deleterious 

alleles, was significantly higher in CbpCg ASI than in CbpCg EUR (p-value 8.97E-06) (Figure 

2A). Additionally, all three CbpCg subpopulations were significantly different from C. 

grandiflora (p-values: ASI 1.13E-10, EUR 2.36E-04, ME 1.18E-04) (Figure 2A). Furthermore, 

similarly as in the CbpCg subgenome, all three CbpCo subpopulations significantly differ from 

their parental species C. orientalis (p-values: ASI 1.43E-04, EUR 3.44E-10, ME 8.76E-03) 

(Figure 2A). The significantly different subpopulation in the CbpCo subgenome was EUR (p-

values: ASI 4.83E-02, ME 2.06E-02) showing the lowest genetic load, however, still higher 

than the CbpCg counterpart (Figure 2A).   

 

Figure 2. A comparison of the proportion of deleterious alleles between subgenomes of C. bursa-

pastoris and genomes of C. grandiflora and C. orientalis. (A) The proportion of deleterious alleles 

within all samples. (B) Proportion of fixed deleterious alleles within each subpopulation and parental 

species. Orange represents C. grandiflora and the C. bursa-pastoris Cg subgenome. The blue indicates 

C. orientalis and the C. bursa-pastoris Co subgenome.  

The pattern observed in the overall genetic load also hold true for the fixed number of 

deleterious alleles. The CbpCg ASI subpopulation showed more fixed deleterious alleles than 

either of the CbpCg EUR and CbpCg ME subpopulations. Similarly, CbpCo EUR displayed 

the fewest fixed deleterious alleles out of the three CbpCo subpopulations (Figure 2B). 
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Figure 3. A comparison of the proportion of derived deleterious alleles between subgenomes of 

C. bursa-pastoris and genomes of C. grandiflora and C. orientalis. (A) The proportion of derived 

deleterious alleles within all samples. (B) Proportion of fixed derived deleterious alleles within each 

subpopulation and parental species. Orange represents C. grandiflora and the C. bursa-pastoris Cg 

subgenome. The blue indicates C. orientalis and the C. bursa-pastoris Co subgenome. 

Adding the reconstructed ancestral sequence as a reference in addition to the SIFT4G 

predictions made it possible to identify derived deleterious alleles specific to the two 

subgenomes (CbpCg and CbpCo) and the parental species (C. grandiflora and C. orientalis).   

These derived deleterious alleles in the polyploid subgenomes are the ones that have occurred 

after C. bursa-pastoris speciation, rather than being inherited from the parental lineages. Within 

the CbpCg subgenome, the subpopulation ASI showed a significantly higher genetic load than 

EUR (p-value 8.68E-06) (Figure 3A). While in the CbpCo subgenome ASI was significantly 

different from both EUR (p-value 5.08E-08) and ME (p-value 1.26E-03). Hence ASI showed 

the largest genetic load (Figure 3A). In comparison with the parental species, all three CbpCg 

subpopulations were significantly different from C. grandiflora (p-values: ASI 1.13E-10, EUR 

2.49E-04, ME 1.09E-04) but only CbpCo EUR (p-value 4.62E-07) and CbpCo ME (p-value 

1.05E-02) differ significantly from C. orientalis (Figure 3A).  

Regarding the fixed derived deleterious mutations, there was barely any difference between the 

two subgenomes in EUR nor ME (Figure 3B). On the other hand, in ASI the CbpCg subgenome 

showed a higher genetic load than the CbpCo (Figure 3B).  
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The distribution of fitness effects 

The result from polyDFE gave that model B (a full DFE) best explained the two non-

synonymous tolerated data sets in EUR. All other data sets were best explained by model A 

(with only a deleterious distribution). To better compare the populations and because there was 

just one population found to be best described by a full DFE model, the first model (A) was 

used on all sets. Additionally, it may be a convergence issue in the software, because the result 

with beneficial mutations appeared unrealistic. 

 

Figure 4. An estimation of the proportions of non-synonymous tolerated (grey) and non-

synonymous deleterious (black) alleles occurring under varying selection coefficients (S).  (A-C) 

C. bursa-pastoris Cg subgenome and subpopulations. (D-F) C. bursa-pastoris Co subgenome and 

subpopulations. S < 0 = deleterious, S = 0 = neutral and S > 0 = beneficial.  

In the ASI subpopulation, most mutations are estimated to be strongly deleterious, followed by 

nearly neutral and with the lowest proportion of intermediate effect alleles (Figure 4A and 

Figure 4D). There are slightly less strongly deleterious and more nearly neutral in the CbpCo 
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subgenome in comparisons to CbpCg. Both of these two patterns are also observed in ME 

(Figure 4C and Figure 4F). Continuing with the EUR subpopulation, most mutations are 

estimated to be strongly deleterious and a similar proportion of mutations in the intermediate 

and nearly neutral effects. Additionally, there is no striking difference between the two 

subgenomes (Figure 4B and Figure 4E).  

 

 

Discussion 

By characterising the genetic load of the allotetraploid C. bursa-pastoris I aimed to investigate 

a possible difference in the accumulation of deleterious alleles between the two subgenomes 

(CbpCg and CbpCo) due to polyploidization. Further, I wanted to explore if there was an effect 

of range expansion across its three subpopulations (ASI, EUR and ME). 

The C. bursa-pastoris subgenomes differ from their parental genomes 

Comparing the CbpCg subpopulations and C. grandiflora in the overall genetic load (Figure 2), 

I found that all C. bursa-pastoris subpopulations have a higher load than C. grandiflora, both 

regarding fixed and all deleterious alleles. This becomes even clearer when considering derived 

deleterious alleles. There are barely any fixed alleles in C. grandiflora and notably more in all 

subpopulations of CbpCg. This pattern, that CbpCg has a higher load than C. grandiflora, 

agrees with estimates of genetic diversity (the proportion of segregating sites and Watterson’s 

theta), given that C. grandiflora has a higher genetic diversity in comparison to CbpCg (Table 

1). However, this is not surprising considering that C. grandiflora is an out-crosser, with a much 

larger effective population size (Ne) than C. bursa-pastoris and is therefore more likely to keep 

its genetic variation and less likely to fix deleterious alleles due to genetic drift. On the other 

hand, C. bursa-pastoris is mainly a selfer and is therefore expected to experience a higher level 

of genetic drift with deleterious alleles more likely to go to fixation. 

Another notable observation concerns the subpopulations for CbpCo and C. orientalis. The 

relationship here is almost reversed to the one between CbpCg and C. grandiflora. The 

subpopulations have slightly less load than C. orientalis (Figure 3). This is most apparent when 

considering fixed deleterious alleles (Figure 3B). Similarly, as with CbpCg and C. grandiflora, 
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the genetic diversity estimates correlates with the SIFT results. Capsella. orientalis displays the 

highest genetic load and the lowest diversity. 

One can only speculate as to why C. orientalis and CbpCo differ in this way. One explanation 

could be a difference in population size. Capsella orientalis is a self-fertilising species that has 

a much smaller range than C. bursa-pastoris (Hurka et al. 2012), both of which should 

inevitably result in a smaller Ne, which in turn would affect the rate at which alleles go to 

fixation. Additionally, keeping in mind the larger range of C. bursa-pastoris and its population 

structure. Theory tells us that genetic diversity can decline in the subpopulations of a structured 

population. Although, the genetic diversity in the population as a whole can still be somewhat 

preserved. This is the result of different alleles getting lost due to genetic drift in the 

subpopulations. However, the allele is still present in the population and can therefore be 

restored in a subpopulation through gene flow.  

Another source of the difference in genetic load between CbpCo and C. orientalis could be that 

C. bursa-pastoris has reduced more of its genetic load than C. orientalis. One can only assume 

that a single factor, such as purging deleterious alleles due to inbreeding, is not a sufficient 

explanation as this is a factor present in both C. bursa-pastoris and C. orientalis. 

One of the expectations is that the additional ploidy level would buffer the genetic load of the 

Cbp subgenomes. Thus, polyploidy cannot be overlooked as a possible source. It has been 

indicated that a neotetraploid can show an increase in mean fitness for generations due to 

masking and a lower proportion of genome wide deleterious alleles, especially in comparison 

to a diploid parental species (Otto and Whitton 2000). However, even if C. bursa-pastoris is a 

relatively new species (100-300 kya (Douglas et al. 2015)) it might be that it has already passed 

the window during which neopolyploids display a lower proportion of genome-wide deleterious 

alleles. As I do not have estimates of the fitness it is hard to assess the likelihood of this 

explanation but it seems plausible. 

Difference between the two subgenomes of the allotetraploid C. bursa-pastoris 

I also discovered that the genetic load differed between the two subgenomes of tetraploid C. 

bursa-pastoris. The CbpCo subgenome displayed a higher proportion of deleterious alleles than 

the CbpCg subgenome (Figure 2, Figure 3). This difference is likely partly reflecting the 

difference between the loads inherited from the different parental species. Capsella orientalis 

provided a subgenome with a higher load and lower genetic diversity since the genome had 
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evolved under higher selfing regime. In contrast, C. grandiflora, as an outcrosser, contributed 

a subgenome with a lower genetic load and higher genetic variation. Therefore, it is apparent 

that the difference in mating system of the parental species has influenced the amount of genetic 

load in the two subgenomes. However, considering the derived deleterious alleles (mutations 

arisen in the two subgenomes after polyploidization) there is still a difference when considering 

derived deleterious alleles within each sample (Figure 3A). This difference between the derived 

deleterious alleles between CbpCg and CbpCo can possibly indicate that one subgenome 

buffers the other, but further information is needed.  

Subpopulations of C. bursa-pastoris are different 

My analysis revealed that there were differences in genetic load between the different 

subpopulations. The first expectation was that the amount of genetic load should increase along 

the waves of range expansion. I therefore expected the load to be highest in the ASI 

subpopulation and lowest in ME. Additionally, the polymorphism should decrease following 

the expansion wave due to repeated bottlenecks and increased genetic drift. In this case ME 

should be the most polymorphic and ASI the least.  

The result found with SIFT does not follow these two hypotheses, therefore, range expansion 

alone cannot explain the patterns of genetic load across the C. bursa-pastoris range. Firstly, 

ME does not have the lowest genetic load. Actually, EUR has a significantly lower load than 

both ME and ASI (Figure 2 and Figure 3). Secondly, EUR is the most polymorphic 

subpopulation (Table 1) in both subgenomes followed by ME and then ASI in CbpCg and 

reversed (ASI then ME) in CbpCo. This reversed relationship between the level of 

polymorphisms between the subgenomes of ASI and ME can be explained by higher values in 

the CbpCo ASI subpopulation due to introgression between CbpCo and C. orientalis 

(Kryvokhyzha et al. unpublished).  

A second expectation was to find a shift towards more deleterious alleles with nearly neutral 

effects in the subpopulations with smaller Ne (however, the majority should still be deleterious 

mutations with strong effects). There is a notable tendency towards this; there are more nearly 

neutral mutations in ASI than in EUR and more in CbpCo than in CbpCg (Figure 4).  

The most striking deviation from expectations is the low genetic load and higher genetic 

diversity found in EUR rather than ME. Connecting the DFE result (where EUR is estimated 
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to have a higher occurrence of alleles with a strong deleterious effect) to the SIFT result (EUR 

having a lower genetic load), suggest that selection is more efficient in EUR.  

Reasons why EUR deviates from my expectations based one the range-expansion scenario 

could be as follows. Firstly, purging deleterious alleles in this population could be more 

effective than both ASI and ME. It has been suggested that purging occurs in two distinct ways: 

by non-random mating and by genetic drift (both which are sensitive to population size), with 

non-random mating expected to be more efficient (Glémin 2003). Bearing this in mind and that 

EUR displays the larger Ne, one can hypothesise that genetic drift might acts as the principal 

force in purging in ASI and ME due to smaller population sizes.  

The second possibility for why EUR deviates from expectations is that the demographic 

scenario assumed may be too simple and in need of refinement to better explain why Ne appears 

lower in ME than in EUR. Similarly, as to the explanation for the reverse polymorphism in 

CbpCo and CbpCg, signs of introgression have been found between CbpCg EUR and C. rubella 

(Slotte et al. 2008; Kryvokhyzha et al. unpublished).  

Further explanations for the deviation is that only alleles with nearly neutral effects adds to the 

expansion load whereas strongly deleterious alleles do not (Peischl et al. 2013). Additionally, 

simulations have indicated that range expansion with cyclic gene flow can effectively purge the 

genetic load (Marchini et al. 2016). It is hard to say whether one of these explanations can 

compensate for the deviation alone or whether the two can apply here.  

Beyond C. bursa-pastoris 

To summarise my findings, first I found that there was a difference in genetic load across the 

range of C. bursa-pastoris and that it could not be explained solely by the simple range-

expansion scenario initially proposed or the available demographic model. This finding can be 

applicable to all expanding species, whether they are invasive or species that are slowly 

extending within an existing habitat.  

In today’s world, it is becoming increasingly common for habitats to rapidly change due to 

human activities. Species that can take advantage of this have an opportunity to expand their 

range. For research in such species, it is therefore crucial to be aware of the genetic load, 

especially since both fragmentation and habitat loss can lead to reduced Ne, thereby contributing 

to the genetic load. The observation that genetic load varies across a population is therefore 
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something to consider when conducting experiments or population genetic related analyses, 

whether it is to get a better understanding of evolutionary aspects or for conservation purposes.    

My second finding was that there was a difference between the two subgenomes of the 

polyploid species. The observed differences could possibly be a simple consequence of 

polyploidization itself but part of the difference simply reflects the different mating systems of 

the two parental species. 

In summary, the current study illustrated well the interaction between genomic properties, 

selection and demography in shaping standing genetic variation in a species.  
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Appendix I, Table and plots comparing SIFT4G result with and without low confidence 

predictions for deleterious alleles.  

Table A1. P-values from the group comparison made by Dunn’s test for including and excluding 

low confidence deleterious alleles.   Black values are below 0.05.   
 

All deleterious Derived deleterious 

Groups tested excluding including excluding including 

CbpCg_ASI - CbpCg_EUR 8,97E-03 7,85E-03 8,68E-03 6,40E-03 

CbpCg_ASI - CbpCg_ME 1,60E-01 1,82E-01 1,65E-01 2,19E-01 

CbpCg_EUR - CbpCg_ME 4,05E-01 3,44E-01 3,89E-01 2,65E-01 

CbpCg_ASI - Cg 1,13E-10 1,13E-10 1,13E-10 1,13E-10 

CbpCg_EUR - Cg 2,36E-04 2,92E-04 2,49E-04 3,99E-04 

CbpCg_ME - Cg 1,18E-04 8,45E-05 1,09E-04 5,07E-05 

CbpCo_ASI - CbpCo_EUR 4,83E-02 3,40E-02 5,08E-08 3,79E-05 

CbpCo_ASI - CbpCo_ME 5,68E-01 6,82E-01 1,26E-03 3,58E-02 

CbpCo_EUR - CbpCo_ME 2,06E-02 2,29E-02 1,51E-01 1,51E-01 

CbpCo_ASI - Co 1,43E-04 2,67E-04 2,45E-01 2,78E-01 

CbpCo_EUR - Co 3,44E-10 3,43E-10 4,62E-07 4,06E-09 

CbpCo_ME - Co 8,76E-03 7,72E-03 1,05E-02 1,20E-03 

 

Figure A1. A comparison of the proportion of deleterious alleles when excluding (A) or including 

(B) low confidence deleterious alleles. Orange represents C. grandiflora and the C. bursa-pastoris 

Cg subgenome. The blue indicates C. orientalis and the C. bursa-pastoris Co subgenome.  
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Figure A2. A comparison of the proportion of derived deleterious alleles when excluding (A) or 

including (B) low confidence deleterious alleles. Orange represents C. grandiflora and the C. bursa-

pastoris Cg subgenome. The blue indicates C. orientalis and the C. bursa-pastoris Co subgenome.  
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Appendix II, Tables with range and initial values provided in order to run polyDFE.  

Table A2. Parameters estimated in the different polyDFE models and the values of the range to 

estimate the parameters within.   

Parameter Range Description 

k 0.01 Value that controls the transformation of the range each parameter 

should be estimated within. 

eps an 0   0.1 Ancestral miss identification error in the SFS under selection 

lambda 0   1 Accounts for the number of neutral mutations that goes to fixation during 

divergence 

theta bar 0   1 Scaled mutation rate per site per generation 

r 0   10 The density of the gamma distribution in model A and B.  

The density of the Exponential distribution in model C 

beta 0   10 Shape of the gamma distribution 

S bar -200   0 Specific to model A, mean of the DFE 

S max 0   100 Specific to model A, the maximum value S can take 

Sd 0   0.5 Specific to model B and C, mean of the DFE for S < 0 

pb 0   50 Specific to model B and C, probability that S > 0 

Sb 0   1 Specific to model B and C, shared selection coefficient of all positively 

selected mutations 

 

Table A3. Parameter values and flags provided in the init file for model D, polyDFE. The flags 

represent, estimate parameter value (0) or that the parameter is kept fixed (1). 

Parameter Flag Value Parameter Flag Value 

eps an 0 0.02 S2 0 -10 

eps cont 1 0.00 p2 - 0.35 

lambda 0 0.005 S3 0 0 

theta bar 0 0.003 p3 - 0.1 

a 1 -1 S4 0 3 

S1 0 -50 p4 - 0.05 

p1 - 0.5 r  0 1 1 1 1 1 1 1 1  

 


